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Abstract: At present, manufacturing enterprises in China and across the world are undergoing a
critical period of transformation and upgrading for sustainable development, with various obstacles
such as financing difficulties and imperfect production facilities. The emergence of the sharing
economy may provide a feasible solution for manufacturing enterprises, but meanwhile, unpredictable
risks are bound to arise in the process of Engagement in the Sharing Economy of Manufacturing
Enterprises (ESEME), and the assessment for the risk of ESEME is an important issue that requires
special attention. Based on the characteristics of ESEME, a risk assessment indicator system is
constructed, and a matter–element extension based approach is proposed to assess the risk of ESEME.
The comprehensive risk value of ESEME can be calculated, and by means of sensitivity analysis and
combinatory analysis, sensitive risk indicators and the risk type of indicators are identified. The
innovation is embodied in three aspects: the sharing economy is studied by the matter–element
extension method, the minimum deviation weight is adopted, and the risk is identified by sensitivity
analysis and combinatory analysis. This assessment method is applied to enterprise E, and good
results are obtained. This work is conducive to promoting manufacturing enterprises to engage in the
sharing economy, which provides an effective vision for enterprises to implement risk management
strategies, and also offers references for the government to formulate relevant policies for ESEME.

Keywords: risk assessment; sharing economy; manufacturing enterprise; engagement;
matter–element

1. Introduction

The manufacturing industry plays an important role in promoting the world economy [1]. With the
rapid development of information technology, the Internet is promoting the transformation of industrial
structures, and modern manufacturing enterprises are undergoing a critical period of transformation,
upgrading and leapfrogging development [2]. In recent years, great changes have taken place in the
social environment faced by the manufacturing industry, such as increasingly fierce global market
competition and diversified customer demands [3]. Due to the transformation of the economic situation
in China, the gradual rise of labor costs, the weakening of the demographic dividend advantage, and
the tightening of environmental and resource constraints, manufacturing enterprises that want to
develop better face enormous challenges [4,5]. As a major component of the manufacturing industry,
small and medium-sized manufacturing enterprises are also playing an increasingly important role in
promoting national economic growth, increasing employment opportunities, promoting technological
innovation, and maintaining social stability. However, the management and operation of enterprises
have become more and more complex, which reduces the adaptability of organizational capability and
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technology research and development capability [6]. In the process of production and operation, small
and medium-sized manufacturing enterprises often encounter some tough problems, such as a lack of
funds, incomplete production facilities, and immature production technology [7]. These issues have
limited the sustainable development of small and medium-sized manufacturing enterprises, which has
been severely squeezed in the increasingly fierce market competition. What small and medium-sized
manufacturing enterprises should focus on is how to manage and improve existing key factors and
achieve sustainable growth, and these key factors include productivity, quality, and flexibility [8].

The sharing economy, which is also known as “collaborative consumption” or the “collaborative
economy”, was first proposed by professor Marcus Felson and professor Joel Spaeth in 1978, and
defined those events in which one or more persons consume economic goods or services in the process
of engaging in joint activities with one or more others [9]. Over time, the significance of the sharing
economy is also changing. We agree that the operation of the sharing economy depends on the Internet
platform, on which people can allocate underutilized resources and get compensation, or get resources
and pay corresponding fees [10,11]. In recent years, due to the rapid development of mobile Internet
and information technology, the sharing economy, a new business model, has attracted much attention
and achieved success on a global scale [12]. The sharing platform, an important component of the
sharing economy business model rather than the traditional business model, relies on the Internet to
act as an intermediary between suppliers and demanders [13]. Contrary to the traditional business
model based on ownership, the sharing economy is established on the use and sharing of products and
services, which emphasizes the right to use resources rather than the transfer of ownership [14,15].
The sharing economy is different from the traditional business model and even surpasses it, which
disaggregates resources and services in time and space; thereby, it has become a competitive business
model [16]. This economic model can not only meet the needs of demanders, but also reduce the waste
of resources, alleviate the pressure of the ecological environment, and further cater to the concept
of sustainable development by making rational and effective use of offline idle materials or labor
services. For both suppliers and demanders, the business model of the sharing economy can also
effectively reduce transaction costs and maximize the profits of both parties [17]. Firstly, the Internet
optimally matches demanders and suppliers, reducing the cost of information acquisition and time
cost. Secondly, the shift of demand from buying to renting greatly reduces the direct cost of resource
acquisition, while the rational and effective allocation of resources by suppliers can reduce the idle cost
of resources and obtain additional benefits. Nowadays, due to its efficiency, convenience, and low
cost, the sharing economy has penetrated into multiple fields in life, such as Uber in the taxi industry,
Airbnb in the hospitality industry, and Lendico in the P2P lending field [13]. The boom in the sharing
economy is going on and on. Further, it is estimated that the sharing economy was worth $15 billion in
2015 and is expected to rise to $335 billion by 2025 [18].

The emergence of the sharing economy undoubtedly provides a good opportunity for small and
medium-sized manufacturing enterprises, which can help solve problems such as insufficient financial
strength, incomplete production facilities, and immature production technology. Choi [19] believed
that the sharing economy platform was worthy of use, and may help enterprises achieve cost reduction
and economies of scale. Meanwhile, Martin [20] put forward another point of view that the sharing
economy can create economic opportunities and achieve sustainable development for enterprises.
Based on these studies, we have reason to believe that small and medium-sized manufacturing
enterprises can establish a mutually beneficial relationship with other enterprises through engaging in
the sharing economy, where they can rent the equipment, technology, and other resources needed in
the production and development process at a low cost. Engaging in the sharing economy not only
alleviates the financial pressure, reduces manufacturing costs, and improves the production efficiency
on enterprises, it also promotes the sustainable development of the manufacturing industry. However,
the research and applications of Engagement in the Sharing Economy of Manufacturing Enterprises
(ESEME) are still limited, and ESEME is affected by many factors such as the macro policy, market
situation, and maturity of the sharing platform, so there are certain risks in the process of ESEME. It is
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necessary to implement risk management in order to help small and medium-sized manufacturing
enterprises accurately identify risks, reduce irreparable losses, and ensure the maximum benefits of
enterprises in a more timely manner in the process of engaging in an uncertain sharing economy [21].

At present, there are a few studies on the sharing economy, which are basically qualitative research
on the impact of the sharing economy. The existing literature has studied perceived risk and online
risk in the sharing economy, and rarely involves the research of risk assessment methods [18,22].
For example, Ert et al. [23] considered that transaction information in the sharing economy is often
asymmetrical, and both sides of the transaction are prone to a crisis of trust. Kim et al. [24] have studied
how increasing the reliability of the sharing platform can reduce the perceived risk of users. However,
the risks faced by manufacturing enterprises can be subdivided by different life cycle phases, different
sources, and different categories [25]. For instance, by sources, risks stem from enterprises’ strategic
actions, competitors, or environmental forces [26]. In addition, the enterprise risk management model
or risk management based on the supply chain has been extensively studied [27,28]. This work is
one of the first studies to explore the risk of ESEME. After long-term research and practice, there
have been many generic risk analysis methods. For instance, Samantra et al. [29] proposed using the
risk breakdown structure method to evaluate the risk of urban construction projects; Ruijters and
Stoelinga [30] thought that the fault tree analysis method was very suitable for analyzing risks related
to safety and economically critical assets, such as power plants, airplanes, data centers, and web shops.
Meanwhile, Garvey et al. [31] utilized the Bayesian network approach to establish a supply network
risk propagation model. As two large and important branches of the decision theory and operations
research, methods based on multiple criteria decision analysis (MCDA) and weight of evidence (WoE)
are also widely used in risk analysis. Thokala et al. [32] adopted MCDA for health care decision making.
Reichelt et al. [33] studied the application of MCDA in risk management of civil and environmental
engineering projects. Goetghebeur et al. [34] combined MCDA with advanced pharmacoepidemiology
for benefit–risk assessments of medicines. Lutter et al. [35] used improved WoE approaches for
chemical evaluations. Agerstrand and Beronius [36] investigated the application of WoE evaluation in
chemical risk assessment within different regulatory frameworks in the European Union. Li et al. [37]
introduced the WoE approach to assess the ecological risk of polymetallic sites. However, these
methods still have some limitations for the risk identification of ESEME. For instance, fault tree analysis
requires accurate knowledge of the relationship between events and the probability of failure, and fails
to describe the severity of risks in detail [38]. While the risk breakdown structure method can clearly
list the risks and sub-risks that may occur, the only method available is qualitative analysis, most risk
factors are ambiguous, and even some hidden risks cannot be identified [39]. The MCDA method
relies on the estimated values of indicators to determine the overall risk value, but does not take into
account the value range of each indicator at different levels. Meanwhile, the WoE approach requires a
lot of frequency data in the application process, but the risk of ESEME lacks frequency data. As for
the emerging issue of ESEME, it involves risk factors from enterprises themselves, sharing platforms,
service providers, and other aspects. In view of these ambiguous risk factors, the relationship between
these risk factors is unclear, and the probability of each factor generating risks is not clear. In addition,
enterprise decision making relies on a precise risk analysis result, while qualitative analysis often fails
to meet the demand. However, these existing risk assessment methods all have some limitations on
this issue.

Through reviewing the literature, it is found that the matter–element extension method is applied
in many assessment projects in other fields. The matter–element extension based approach is mainly
composed of matter–element theory and an extension set. Generally speaking, it is an approach to
study the possibility of the extension of objects and the law of exploration and innovation with a
formal approach. In the traditional Chinese story, Cao Chong weighed the elephant, Cao, according
to the characteristics of the elephant’s weight, converting the measurement of the elephant’s weight
to measure the weight of stones. By a similar means, research should not only focus on the direct
quantitative relationship, but should also study the relationship and changes of objects, characteristics,
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and their values: this is the idea of the matter–element extension theory, which translates incompatibility
problems into compatibility ones, thus solving the contradictions. Professor Cai Wen first proposed
the matter–extension method in 1983, and believed that in an objective world, objects have a unity
of quality and quantity, and the quantitative and qualitative changes of objects are closely related
to each other [40]. In conclusion, the matter–element extension method is a method that considers
both quantitative changes and qualitative changes, and transforms the contradictory problems in the
objective world into the contradictions between the matter elements [41]. Compared with other risk
analysis methods, the matter–element extension model can support multi-attribute risk analysis, be
well integrated with the indicator system, and consider the differences and inaccuracies of indicators
under various risk levels. What’s more, this approach is suitable for the assessment and analysis
of complex systems, which integrates qualitative analysis and quantitative analysis [42], and has
been widely used in many fields. For instance, Deng et al. [43] adopted the fuzzy matter–element
model and the improved entropy weight method to evaluate the health of river in the Taihu Plain.
Then, Shao et al. [44] also conducted a performance evaluation to analyze the port supply chain, in
which they used the fuzzy matter–element analysis method. Similarly, based on the matter–element
extension method, Li et al. [45] studied the risks of the Qinghai–Tibet power grid interconnection
project under the fuzzy theory environment. However, Xu et al. [46] proposed an improved TOPSIS
(Technique for Order Preference by Similarity to an Ideal Solution) method that differed from the
above studies based on matter–element extension theory, and they made a comprehensive assessment
on the coordinated development for the regional power grid and renewable energy power supply
by this method. Combined with the fuzzy analytic hierarchy process (FAHP) and entropy weight
method, Liu et al. [47] introduced the matter–element model to evaluate the urbanization of an
economy–society–ecology system. In addition, Zhao et al. [48] introduced extension theory and system
engineering theory to assess the stability of a high rock slope. In the above research, the matter–element
extension based approach has been used to assess many kinds of projects, and achieved good results.

Based on the above studies, we introduce a matter–element extension based approach according
to the characteristics of ESEME. The extension theory can be used to analyze and study the main risk
indicators involved in the process of ESEME from the perspectives of sharing platform risk, financial
risk, organizational management risk, co-production risk, market risk, and macro policy risk. Then,
the matter–element extension model can be used to transform incompatible problems into compatible
ones, so as to conduct risk assessment. However, different risk indicators may have different effects
on the comprehensive risk value, so the weighting method of indicators is particularly important for
risk assessment. The traditional matter–element model adopts a single subjective weighting method,
and it has some limitations [49]. On the basis of the literature, methods used to weight assessment
indicators are often AHP (Analytic Hierarchy Process), the entropy weight method, or a combination
of AHP and the entropy weight method. The order relation method is a subjective weighting method
that relies on the evaluators’ subjective attention to each indicator [50]. Compared with AHP, the
order relation method is simpler and more practical, because it does not need to construct a judgment
matrix and consistency test. Meanwhile, the entropy weight method is an objective weighting method,
which determines indicators’ weights according to the variation degree of indicators’ values, and can
effectively reflect the hidden information among indicators. Only the subjective weighting method or
the objective weighting method is too one-sided in practical problems. Therefore, drawing upon the
minimization of the deviation method, the comprehensive weight integrating entropy based weight
and order relation based weight is obtained, and the risk level is determined. Next, by means of
sensitivity analysis and combinatory analysis, sensitive risk indicators and the risk type of indicators
can be identified.

The innovations of this paper are as follows:

(1). According to a literature review, this is one of the first studies to assess the risk of ESEME. Unlike
the existing risk research of the sharing economy, the matter–element extension method is adopted
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to construct a risk assessment indicator system for ESEME and more systematically assess the
risk of ESEME.

(2). On the basis of the traditional matter–element extension model, the method of indicator weighting
is improved. We draw upon the minimum deviation method, which integrates the entropy
weight method and the order relation method, and more reasonably reveal the importance of
each risk indicator.

(3). This work not only conducts a sensitivity analysis on the risk indicators’ values to identify
risk indicators with high sensitivity, but also performs a combinatory analysis according to the
comprehensive risk value and sensitivity, and then divides the risk indicators into four categories:
Safety Type, Long-Term Planning Type, Preventive Type, and Critical Concern Type.

In summary, this paper constructs an effective and practical risk assessment model for ESEME.
Through the model, the comprehensive risk value of a project can be obtained, and the risk factors
with high sensitivity can be identified. Further, manufacturing enterprises can more accurately locate
and control risk factors, and formulate more reasonable strategic planning.

2. Construction of the Risk Assessment Indicator System and the Matter–Element Extension
Based Approach for ESEME

2.1. Risk Assessment Indicator System

In order to objectively assess the risk of ESEME, the relevant literature is reviewed widely first.
According to the OECD/JRC Handbook, an indicator system should clearly define the object to be
measured and its sub-components, and select appropriate indicators that reflect the dimensions of
the overall composite and can be observed and measured [51]. From the perspective of sources, the
risks faced by enterprises mainly come from themselves, the external environment, and partners [52].
As for enterprises themselves, there are mainly financial risks, and as for the external environment
faced by the enterprises, there are mainly market risks [53]. Franks et al. [54] stated that environmental
risks and social risks were critical factors that enterprises needed to consider. Based on the above
research studies, this paper considers financial risk, market risk, and macro policy risk when first
analyzing risk factors. According to the definition of the sharing economy, the sharing economy model
consists of a sharing platform, demanders, and suppliers. Whether an enterprise can quickly find a
matching supplier and successfully trade largely depends on the sharing platform, so the risk of the
sharing platform is taken into account [13]. It is obviously one-sided to measure the internal risk of
an enterprise only on financial risk, and the enterprise’s management and operation ability will also
have an impact on the project, so the organizational management risk is worth paying attention to. In
addition, an enterprise needs to interact and cooperate with a supplier, which is also an important
part of ESEME, so co-production risk should also be taken into account. The establishment of an
indicator system includes two aspects: the selection of indicators and the design of the indicator system
structure. The selection of indicators should fully consider the concept and calculation range of each
indicator, while the complexity of the multi-attribute comprehensive assessment often determines
the hierarchical structure of the indicator system. As Olson, Birge, and Linton, three editors of the
Technovation journal pointed out in the issue titled “Risk and Uncertainty Management in Technological
Innovation”, risk linked to information technology should include unintended uses and threats both
inside the enterprise [55] and along the supply chain [56], while risk associated with technology
innovation should take marketing [57], supply chain partners [58], and other stakeholders [59] into
consideration [60]. Based on the above theory and method of technical application risk, considering
the characteristics of ESEME, we construct a risk assessment indicator system from six dimensions:
sharing platform risk, financial risk, organizational management risk, co-production risk, market risk,
and macro policy risk. The system includes six first-level indicators and 21 second-level indicators, as
shown in Figure 1.
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Figure 1. The risk assessment indicator system of Engagement in the Sharing Economy of Manufacturing
Enterprises (ESEME). “SE” Represents “Sharing Economy” (the same below).

The corresponding symbols of the first-level indicators are given; sharing platform risk is
expressed as SPR, financial risk is expressed as FR, organizational management risk is expressed as
OMR, co-production risk is expressed as CPR, market risk is expressed as MR, and macro policy risk
is expressed as MPR. According to the correlation between the indicators and the risk of ESEME,
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the 21 second-level indicators can be divided into two categories: forward indicators and reverse
indicators. Forward indicators include demand fluctuations and industry competition, in which the
higher the indicator’s value is, the higher the final risk will be, and the type is represented by “+”. For
the remaining 19 indicators that are the reverse indicators, the higher the indicator’s value is, the lower
the risk is, and the type is represented by “–”. The symbols, types, and explanation of the second-level
indicators are shown in Table 1.

Table 1. The symbols, types, and explanation of the second-level risk indicators.

Second-Level Indicator Symbol Type Explanation

Platform maturity pm –
The degree to which users are satisfied with the
sharing platform in terms of technology, design,
functions, and services

Manufacturing resources diversity md – The richness of the categories of manufacturing
resources available for sharing

Corporate participation cp – The degree of enthusiasm and initiative of
manufacturing enterprises on the sharing platform

Platform interaction security is – The reliability of the sharing platform to protect
users’ information security and privacy

Co-manufacturing cost mc – The degree to which the enterprise needs to provide
production costs when cooperating with its supplier

Financial strength f s – The richness of the enterprise’s funds

Financial operation capability f c – The ability of the enterprise to handle capital
turnover

Supply chain management level sl – The overall efficiency and cost-effectiveness of the
enterprise in supply chain

Human resource management level hl – The level to manage employees in a scientific and
rational way

Collaborative decision-making level dl –
The level of decision-making at which the enterprise
and its supplier share information, resources, and
conduct combat operations together

Organizational flexibility o f –
The ability of the enterprise to face external changes
without causing serious confusion in the
organization

Sharing facilities advancement f a – The ability of shared facilities to efficiently complete
production tasks

Cooperation efficiency ce – Productivity level of cooperation between the
enterprise and its supplier

Production capacity pc – The working ability of the enterprise’s employees

Technology life cycle tc – The time course of production technology from
research and development to elimination

Demand fluctuations d f +
The degree of change in market demand for the
enterprise’s products

Industry competition ic +
The position and pressure of the enterprise in the
same industry

Marketing ability ma – The ability of the enterprise to sell products

Policy support of SE ps – Government’s support for the sharing economy
business model

Macroeconomic situation ms – The state of macroeconomic development of the
country and its trends

Social acceptance of SE sa – The public’s acceptance of the sharing economy
business model

Note: “+” represented forward indicators; “–” represented reverse indicators.
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2.2. The Matter–Element Extension Based Approach for ESEME

In the matter–element extension based approach, matter–element is the basic element describing
objects, and it is an ordered triad composed of an object, characteristics, and the corresponding values
of characteristics. Assuming that the risk of ESEME is N, the characteristic is x, and the value of the
characteristic is h, then its matter–element can be expressed as R = (N, x, h).

Firstly, the main characteristic matter–element matrix is defined. Assuming that the risk of ESEME
N has s characteristics in total, and if there are t main characteristics, then the main characteristic
matter–element matrix of N can be expressed as:

R =


N x1 h1

x2 h2
...

...
xt ht

 =


R1

R2
...

Rt

 (1)

where Ri = (N, xi, hi)(i = 1, 2, · · · , t) represents the sub-characteristic matter–element matrix of R.
Secondly, the classical field matter–element matrix is defined. Suppose there are m risk levels and

n risk indicators; then, the classical field matter–element matrix of the risk level j( j = 1, 2, · · · , m) is
expressed as:

R0 j =
(
N0 j , ci, v0 ji

)
=


N0 j c1 v0 j1

c2 v0 j2
...

...
cn v0 jn

 =


N0 j c1
〈
a0 j1, b0 j1

〉
c2

〈
a0 j2, b0 j2

〉
...

...
cn

〈
a0 jn, b0 jn

〉
 (2)

where N0 j represents the jth risk level of ESEME; ci represents the ith (i = 1, 2, · · · , n) risk indicator;
v0 ji represents the value range of ci on the jth risk level, expressed by

〈
a0 ji, b0 ji

〉
; a0 ji represents the

minimum value of ci on the jth risk level; and b0 ji represents the maximum value of ci on the jth
risk level.

Then, the controlled field matter–element matrix is defined.

Rp =
(
Np , ci, vpi

)
=


Np c1 vp1

c2 vp2
...

...
cn vpn

 =


Np c1
〈
ap1, bp1

〉
c2

〈
ap2, bp2

〉
...

...
cn

〈
apn, bpn

〉
 (3)

where Np represents the total risk level; vpi represents the corresponding value range of ci at the overall
risk level, expressed by

〈
api, bpi

〉
; api represents the minimum value of ci at the overall risk level; and

bpi represents the maximum value of ci at the overall risk level.
Finally, the matter–element matrix to be evaluated is established.

R = (N , ci, vi ) =


N c1 v1

c2 v2
...

...
cn vn

 (4)

where N represents the risk level to be identified; and vi represents the measured value of risk
indicator ci.
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3. Assessment Methods

3.1. Correlation Degree Calculation Method

Since each risk indicator is a qualitative indicator, subjective valuation is required. The initial
risk values of indicators are scored by experts from relevant fields, and the score range is [0, 100].
Then, the average of scores from all the experts is standardized, namely the measured values of risk
indicators vi. In order to calculate the correlation degree between each risk indicator and risk level, the
concept of “proximity” is introduced here—that is, the quantitative relationship between the point and
interval position. The calculation method of the proximity that each risk indicator to the classical field
matter–element and the controlled field matter–element respectively is as follows:

ρ
(
vi, v0 ji

)
=

∣∣∣∣∣∣vi −
a0 ji + b0 ji

2

∣∣∣∣∣∣− b0 ji − a0 ji

2
(5)

ρ
(
vi, vpi

)
=

∣∣∣∣∣∣vi −
api + bpi

2

∣∣∣∣∣∣− bpi − api

2
(6)

i = 1, 2, · · · , n; j = 1, 2, · · · , m

where ρ
(
vi, v0 ji

)
represents the proximity of the ith risk indicator to the corresponding classical field

matter–element at the jth risk level; and ρ
(
vi, vpi

)
represents the proximity of the ith risk indicator to

the corresponding controlled field matter–element at the jth risk level.
Then, the correlation degree between the ith risk indicator and the jth risk level can be expressed as:

K j(vi) =


−ρ(vi,v0 ji)∣∣∣v0 ji

∣∣∣ , vi ∈ v0 ji

ρ(vi,v0 ji)
ρ(vi,vpi)−ρ(vi,v0 ji)

, vi < v0 ji

(7)

When the correlation degree of each indicator and each risk level is obtained, the correlation
degree matrix can be expressed as K =

[
K j(vi)

]
n×m

.

3.2. Comprehensive Weighting Method

3.2.1. Entropy Weight Method

As far as we know, entropy can be used to measure the disorder degree of a system [61]. The
smaller the entropy value is, the more effective information the system contains, and the more important
this characteristic is. Therefore, entropy weight can be considered to determine the weight of risk
indicators. The entropy weight method is already a mature objective weighting method that is
widely used in many fields. For instance, Xu et al. [62] used the improved entropy weight method to
determine the weight of each assessment indicator for urban flooding risk assessment. Liu et al. [63]
also uses the entropy weight method when conducting fire risk assessment for large-scale commercial
buildings. In order to assess concentrated solar power technologies, Cavallaro et al. [64] proposed a
modified intuitionistic fuzzy TOPSIS with a trigonometric entropy vector weight method. Based on
the matter–element extension model, the entropy weight of each risk indicator is determined. The
main calculation steps are as follows:

(1). Calculate the correlation degree K j(vi) between the measured value vi of the risk indicator ci and
the jth risk level according to the Formulas (5)–(7), and then construct the correlation degree
matrix K =

(
ri j

)
n×m

, where ri j = K j(vi), ( j = 1, 2, · · · , m, i = 1, 2, · · · , n).
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(2). Calculate the entropy value of each risk indicator, and the calculate formula is as follows:

Hi = −k
m∑

j=1

fi j· ln fi j (8)

where:
k =

1
ln m

,

fi j =
ri j∑m

j=1 ri j

If the correlation degree ri j = 0, then ln fi j is meaningless; to avoid this problem, the calculation
method of fi j needs to be corrected. The correction result is as follows:

fi j =
1 + ri j∑m

j=1

(
1 + ri j

)
(3). Determine the entropy weight of each risk indicator, which is calculated as follows:

wE
i =

1−Hi

n−
∑n

i=1 Hi
(9)

3.2.2. The Order Relation Method

The order relation method is a subjective weighting method that is based on the expert’s importance
ranking and quantitative assignment of assessment indicators. In this method, it is not necessary to
construct a judgment matrix and consistency test, and the calculation is relatively simple. The steps of
determining the weight of risk indicators by the order relation method are as follows:

(1). Determine the order relationship. Supposing that the importance of the assessment indicator
xi is not less than x j, it is denoted as xi > x j. At the beginning, the relevant experts select
the most important one from the assessment indicators set {x1, x2, · · · , xn}, which is marked as
x1
∗. Then, experts select the most important one of the remaining n − 1 evaluation indicators,

which is marked as x2
∗. In a similar way, until the end of the sort, we get the order relationship

x1
∗ > x2

∗ > · · · > xn
∗.

(2). Determine the importance degree ratio of adjacent indicators. The expert gives the ideal judgment
of the importance degree ratio wO

k−1/wO
k of the adjacent indicators xk−1 and xk as:

wO
k−1

wO
k

= rk, (k = n, n− 1, n− 2, · · · , 3, 2) (10)

The value of rk can be referred to Table 2.
(3). Calculate the weight coefficient wO

i . Suppose the rk given by the experts satisfies the constraint
rk−1 > 1/rk, (k = n, n− 1, n− 2, · · · , 3, 2); then, wk is:

wO
n =

1 +
n∑

k=2

n∏
i=k

ri

−1

(11)

wO
k−1 = rkwO

k , (k = n, n− 1, n− 2, · · · , 3, 2) (12)
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Table 2. rk assignment reference table.

rk Explanation

1.0 Indicator xk−1 is as important as the indicator xk
1.2 Indicator xk−1 is a little more important than the indicator xk
1.4 Indicator xk−1 is obviously more important than the indicator xk
1.6 Indicator xk−1 is strongly more important than the indicator xk
1.8 Indicator xk−1 is extremely more important than the indicator xk

3.2.3. Minimum Deviation Weight

Combined with the idea of optimization theory, different methods are used to determine
the weights of the risk indicators of ESEME, and construct a basic weight vector wt =

{wt1, wt2, · · · , wtn}(t = 1, 2, · · · , T); then, any linear combination of T weight vectors is:

w∗ =
T∑

t=1

αt·wt
T,αt > 0 (13)

Then, based on the idea of minimization of deviation, the linear combination coefficient αt in
Equation (13) is optimized, and the most satisfactory weight vector w is selected, which includes the
minimum deviation weights. The decision model is as follows:

min||
T∑

t=1

αt·wt
T
−wi

T
||2, (i = 1, 2, · · · , T) (14)

In the process of risk assessment, in order to avoid the one-sidedness of the indicators’ weights, this
paper comprehensively considered the entropy weight method belonging to the objective weighting
method and the order relation method belonging to the subjective weighting method, and determined
the final risk indicators’ weights through the optimization idea of minimum deviation.

3.3. Comprehensive Risk Value Calculation Method

Firstly, after determining the comprehensive weights of the risk indicators, it can be known that
the comprehensive correlation degree of the risk N to be evaluated with the jth risk level is:

K j(N) =
n∑

i=1

(wi·K j(vi)), j = 1, 2, · · · , m (15)

where
∑n

i=1 wi = 1.
Secondly, suppose that K j#(N) = max

(
K j(N)

)
; then, the overall risk level is j#.

Then, calculate the risk value j∗ of ESEME. The calculation formula is as follows:

K j(N) =
K j(N) −min K j(N)

max K j(N) −min K j(N)
, j = 1, 2, · · · , m (16)

j∗ =

∑m
j=1

(
j·K j(N)

)
∑m

j=1 K j(N)
(17)

where min K j(N) represents the minimum risk level correlation, and max K j(N) represents the
maximum risk level correlation.



www.manaraa.com

Sustainability 2019, 11, 4774 12 of 29

3.4. Sensitivity Analysis

As Saltelli et al. noted in the global sensitivity analysis [65], “Careful use of experimental designs
can often answer more specific questions, with an investment of few resources”. In the ESEME context,
there is no trial-and-error condition, and enterprises do not want to see the actual risk and loss occur.
Consequently, the numerical experimental design method is adopted to analyze the sensitivity of all
the indicators. During experiments, some variables can be controlled (e.g., temperature, duration),
while some variables cannot be controlled but can affect experimental results (e.g., air pressure and
humidity). More importantly, the purpose of experiments is to observe the characteristics of each
variable affecting one or more measurements. Specifically, the sensitivity of each risk indicator is
observed by changing the value of each risk indicator according to the absolute value and the ratio, and
measuring the total risk value after the change. Similar sensitivity analysis methods to observe changes
of target variables by adjusting indicators’ values have been applied in matter–element analysis; for
example, He et al. conducted sensitivity analysis on the value and weight of urban grid planning
risk indicators [66]. Li and Peng introduced sensitivity analyses to reveal the influence of the change
of indicators’ values on each indicator’s weight and the eigenvalue of the grade, and to find out the
main impact indicators [49]. To implement sensitivity analysis, the key indicator and corresponding
influencing factors should be determined firstly. Under the same conditions, change the values of
relevant factors one by one and observe the changing laws of the key indicator through the objective
function to identify the sensitive factors. Suppose there are n influencing factors whose values are
x1, x2, · · · , xn respectively; then, the value of the objective function is y(x) = (x1, x2, · · · , xn), and the
value of the function after the change of the ith (i = 1, 2, · · · , n) factor value is y

(
xi j

)
. After t tests, the

sensitivity of the factor can be expressed as:

σi =

√√√√
1

t− 1

t∑
j=1

[
y
(
xi j

)
− µi

]2
, j = 1, 2, · · · , t (18)

where µi =
1
t
∑t

j=1 y
(
xi j

)
.

From the above calculation, the larger the σ of a factor, the stronger the sensitivity. Ranking
sensitivities of factors, sensitive factors that have a greater impact on the key indicator can be identified.
In order to more intuitively and clearly learn the sensitivity of each influencing factor, it can also be
presented by means of charts.

3.5. Combinatory Analysis

Combinatory analysis requires a coordinate system, where risk indicators’ values and their
corresponding sensitivities can be inserted. According to the average value of each indicator’s
sensitivity σ and the average value of each indicator x, the coordinate system can be divided. For
the relationship of each indicator’s value xi and sensitivity σi—that is, the distribution position in the
coordinate system—the risk indicators can be divided into four types.

The first type is called the “Safety Type”. The indicator’s value and sensitivity of this type
are low (xi ≤ x & σi ≤ σ), which has less impact on the comprehensive risk and does not have to be
too concerned.

The second type is called the “Long-Term Planning Type”. Such risk indicators have higher values
but lower sensitivity (xi > x & σi ≤ σ). Even if the indicator’s value decreases in the short term, it
has little effect on the comprehensive risk. Therefore, the risk indicators of this type need long-term
continuous control at a certain level.

The third type is called the “Preventive Type”. The indicator’s value of such risk indicators
are low, but its sensitivity is very high (xi ≤ x & σi > σ). However, the fluctuation of the indicator’s
value may cause great change in the comprehensive risk value. Therefore, such indicators need to be
defended in advance and measures need to be taken to keep their values low.
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The fourth type is called the “Critical Concern Type”. The indicator’s value and sensitivity of such
risk indicators are very high (xi > x & σi > σ). Although the indicator’s value changes slightly, it may
lead to significant change in the comprehensive risk value. If such indicators are effectively managed,
the comprehensive risk value can be significantly reduced. However, if they are not managed properly,
the comprehensive risk value may rise sharply. Therefore, it is necessary to pay special attention to
these indicators.

3.6. Assessment Process

The risk assessment process of ESEME based on the matter–element extension method is as follows.

Step 1 Construct a risk assessment indicator system that is suitable for ESEME.
Step 2 Determine the number of risk levels m, the classical field matter–element matrix R0 j, and the

controlled field matter–element matrix Rp of each risk level.
Step 3 Assign values to each risk indicator and determine the matter–element matrix to be evaluated, R.
Step 4 Calculate the correlation degree K j(vi) between each risk indicator and each risk level, and

form the correlation degree matrix K.
Step 5 Calculate the entropy weight wE

i of each indicator according to the correlation degree matrix.

Step 6 Determine the subjective weight wO
i of each indicator based on the order relation method.

Step 7 Determine the comprehensive weight wi based on the idea of minimization of deviation.
Step 8 Calculate the comprehensive risk value j∗ of ESEME and determine the final risk level j#.
Step 9 Conduct sensitivity analysis and combinatory analysis to identify risk factors.

The assessment process of comprehensive risk is shown in Figure 2.

Sustainability 2019, 11, x FOR PEER REVIEW 13 of 28 

Step 5 Calculate the entropy weight 𝑤  of each indicator according to the correlation degree 
matrix. 

Step 6 Determine the subjective weight 𝑤  of each indicator based on the order relation method. 
Step 7 Determine the comprehensive weight 𝑤  based on the idea of minimization of deviation. 
Step 8 Calculate the comprehensive risk value 𝑗∗ of ESEME and determine the final risk level 𝑗#. 
Step 9 Conduct sensitivity analysis and combinatory analysis to identify risk factors. 

The assessment process of comprehensive risk is shown in Figure 2. 

 
Figure 2. The risk assessment flow chart of ESEME. 

4. Example Analysis 

E is a small and medium-sized manufacturing enterprise in China, which is committed to 
expanding its production scale and improving its sales performance. Due to insufficient internal 
funds and incomplete production facilities, enterprise E plans to engage in the sharing economy to 
solve existing issues in a low-cost way. Based on the matter–element extension method and the 
minimum deviation weighting method, this paper studies the risk issues of enterprise E engaging in 
the sharing economy. In order to assess the risks of enterprise E, an assessment group is formed, 
which consists of professors, associate professors, and doctoral students engaged in research related 
to the sharing economy and risk assessment, as well as manufacturing enterprise engineers and 
department managers, respectively from our university, enterprise E, and another manufacturing 
enterprise. Then, enterprise E provides detailed information on its business conditions, technical 
strengths, and progress on engagement in the sharing economy, and the assessment group evaluates 
indicators according to the risk indicator system in Section 2.1. By the way, it is understandable that 
different experts have different opinions. On this basis, the paper implements a risk assessment of 
enterprise E’s engagement in the sharing economy according to the assessment process in Section 3.6. 
The specific steps are as follows. 

4.1. Calculation of Risk Value 

Figure 2. The risk assessment flow chart of ESEME.



www.manaraa.com

Sustainability 2019, 11, 4774 14 of 29

4. Example Analysis

E is a small and medium-sized manufacturing enterprise in China, which is committed to
expanding its production scale and improving its sales performance. Due to insufficient internal
funds and incomplete production facilities, enterprise E plans to engage in the sharing economy
to solve existing issues in a low-cost way. Based on the matter–element extension method and the
minimum deviation weighting method, this paper studies the risk issues of enterprise E engaging in
the sharing economy. In order to assess the risks of enterprise E, an assessment group is formed, which
consists of professors, associate professors, and doctoral students engaged in research related to the
sharing economy and risk assessment, as well as manufacturing enterprise engineers and department
managers, respectively from our university, enterprise E, and another manufacturing enterprise. Then,
enterprise E provides detailed information on its business conditions, technical strengths, and progress
on engagement in the sharing economy, and the assessment group evaluates indicators according to
the risk indicator system in Section 2.1. By the way, it is understandable that different experts have
different opinions. On this basis, the paper implements a risk assessment of enterprise E’s engagement
in the sharing economy according to the assessment process in Section 3.6. The specific steps are
as follows.

4.1. Calculation of Risk Value

4.1.1. Determination of the Matter–Element Matrices

The risk levels are divided into four categories, which are low, medium–low, medium–high,
and high. According to the value range of each risk indicator ci(i = 1, 2, · · · , 21) in different risk
levels, the classical field matter–element matrix and the controlled field matter–element matrix are
determined successively.

The classical field matter–element matrix is:

R01 =


N01 c1 〈0, 0.25〉

c2 〈0, 0.25〉
...

...
c21 〈0, 0.25〉



R02 =


N02 c1 〈0.25, 0.5〉

c2 〈0.25, 0.5〉
...

...
c21 〈0.25, 0.5〉

.

R03 =


N03 c1 〈0.5, 0.75〉

c2 〈0.5, 0.75〉
...

...
c21 〈0.5, 0.75〉



R04 =


N04 c1 〈0.75, 1〉

c2 〈0.75, 1〉
...

...
c21 〈0.75, 1〉
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The controlled field matter–element matrix is:

Rp =


Np c1 〈0, 1〉

c2 〈0, 1〉
...

...
c21 〈0, 1〉


Since each risk indicator is a qualitative indicator, subjective valuation is required. Five experts

are invited to score each risk indicator, and the score range is [0, 100]. Then, the average of the five
scores is standardized (see Appendix A). The final matter–element matrix to be evaluated is:

R =



N C1 0.444
C2 0.506
C3 0.764
C4 0.418
C5 0.270
C6 0.382
C7 0.502
C8 0.318
C9 0.346
C10 0.494
C11 0.688
C12 0.292
C13 0.814
C14 0.344
C15 0.280
C16 0.480
C17 0.758
C18 0.262
C19 0.238
C20 0.378
C21 0.410
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4.1.2. Calculation of the Correlation Degree Matrix

Calculate the correlation degree between each risk indicator and each risk level according to
Formulas (5)–(7). The correlation degree matrix K is:

K =
[
K j(vi)

]
21×4

=



−0.3041 0.2240 −0.1120 −0.4080
−0.3413 −0.0120 0.0240 −0.3306
−0.6853 −0.5280 −0.0560 0.0560
−0.2867 0.3280 −0.1640 −0.4427
−0.0690 0.0800 −0.4600 −0.6400
−0.2568 0.4720 −0.2360 −0.4907
−0.3360 −0.0040 0.0080 −0.3324
−0.1762 0.2720 −0.3640 −0.5760
−0.2172 0.3840 −0.3080 −0.5387
−0.3306 0.0240 −0.0120 −0.3413
−0.5840 −0.3760 0.2480 −0.1658
−0.1257 0.1680 −0.4160 −0.6107
−0.7520 −0.6280 −0.2560 0.2560
−0.2146 0.3760 −0.3120 −0.5413
−0.0968 0.1200 −0.4400 −0.6267
−0.3239 0.0800 −0.0400 −0.3600
−0.6773 −0.5160 −0.0320 0.0320
−0.0438 0.0480 −0.4760 −0.6507
0.0480 −0.0480 −0.5240 −0.6827
−0.2530 0.4880 −0.2440 −0.4960
−0.2807 0.3600 −0.1800 −0.4533



(19)

4.1.3. Calculation of Indicator’s Weight

First of all, for determining the weight of the first-level risk indicators based on the order relation
method, five experts are invited again to rank the importance of the first-level risk indicators, and
the importance degree ratio of the adjacent indicators is determined according to Table 2. Then, the
weight of each first-level risk indicator is calculated according to Formulas (11) and (12), and the
average value of the weights obtained by the five experts is taken. Similarly, the weights of all the
second-level indicators below each first-level indicator are calculated, respectively. The indicators’
order relationship, the importance ratio between the two adjacent indicators and indicators’ weights
from the five experts are provided in Appendix B. Then, the weight of the second-level indicator is
multiplied by the weight of the first-level indicator to which it belongs, which is the combined weight
of the second-level indicator based on the order relation method. Afterwards, the entropy weight is
obtained according to the correlation degree matrix K and the calculation steps shown in Section 3.2.1.
Then, the minimum deviation weight is calculated through the Formulas (13) and (14), which is the
comprehensive weight required in this paper. Ultimately, the indicators’ comprehensive weights are
shown in Table 3.



www.manaraa.com

Sustainability 2019, 11, 4774 17 of 29

Table 3. Comprehensive weight based on minimization of deviation.

First-Level Indicator Weight Second-Level Indicator Weight Combined Weight Entropy Weight Comprehensive Weight

SPR 0.2618 pm 0.2522 0.0660 0.0255 0.0487
md 0.2961 0.0775 0.0139 0.0504
cp 0.2828 0.0740 0.0688 0.0718
is 0.1689 0.0442 0.0351 0.0403

FR 0.3234 mc 0.3489 0.1128 0.0544 0.0879
f s 0.3614 0.1169 0.0520 0.0892
f c 0.2897 0.0937 0.0134 0.0595

OMR 0.0991 sl 0.3179 0.0315 0.0505 0.0396
hl 0.1818 0.0180 0.0524 0.0327
dl 0.3289 0.0326 0.0139 0.0246
o f 0.1715 0.0170 0.0504 0.0312

CPR 0.0984 f a 0.1999 0.0197 0.0510 0.0331
ce 0.2909 0.0286 0.1156 0.0657
pc 0.2963 0.0292 0.0522 0.0390
tc 0.2129 0.0209 0.0524 0.0343

MR 0.0988 d f 0.3645 0.0360 0.0162 0.0276
ic 0.3013 0.0298 0.0653 0.0449

ma 0.3342 0.0330 0.0566 0.0431

MPR 0.1186 ps 0.3808 0.0452 0.0676 0.0548
ms 0.3375 0.0400 0.0542 0.0460
sa 0.2817 0.0334 0.0385 0.0356

4.1.4. Calculation of the Comprehensive Risk Value

According to Formula (15), the correlation degree between the risk of ESEME and each risk level
can be calculated, which is K1(N) = −0.3077, K2(N) = 0.0435, K3(N) = −0.2201, and K4(N) = −0.3830,
respectively. From the above calculation results, we can know that the value of K2(N) is the largest, so
the risk level of ESEME is medium–low. According to Formulas (16) and (17), the final risk value of
ESEME can be calculated as 2.1317.

4.2. Analysis of Calculation Results

According to the comprehensive risk value 2.1317, the overall risk of enterprise E is medium–low,
indicating that enterprise E will encounter a little risk resistance in the process of engagement in the
sharing economy. From the correlation degree matrix, the risk level of each second-level risk indicator
can be known. Among all the 21 risk indicators, only ps (Policy support of SE) is at a low risk level, which
means that enterprise E can get support from the government when they engage in the sharing economy,
and it is conducive to its sustainable development. Fourteen indicators are at a medium–low risk level,
respectively pm (Platform maturity), is (Platform interaction security), mc (Co-manufacturing cost), f s
(Financial strength), sl (Supply chain management level), hl (Human resource management level), dl
(Collaborative decision-making level), f a (Sharing facilities advancement), pc (Production capacity),
tc (Technology life cycle), d f (Demand fluctuations), ma (Marketing ability), ms (Macroeconomic
situation), and sa (Social acceptance of SE). Although the current risks are small, these indicators
remain to be seen, because they may become medium–high risk or high risk as environmental changes.
Three indicators are at the medium–high risk level; these are respectively md (Manufacturing resources
diversity), f c (Financial operation capability), and o f (Organizational flexibility). Three indicators
are also at the high level, which are cp (Corporate participation), ce (Cooperation efficiency), and ic
(Industry competition). They require special attention, and enterprise E needs to control and prevent
for different risk factors.

In addition to judging the risk level of the second-level risk indicators and calculating the
comprehensive risk value, the risk level of the six first-level indicators can also be judged according
to Formula (15). Since K1(SPR) = 0.0502 is the largest among K j(SPR)( j = 1, 2, 3, 4), the sharing
platform risk is at a low level; Since K3(FR) = 0.0350 is the largest among K j(FR), the financial risk is
at a medium-high level. Since K1(OMR) = 0.0103 is the largest among K j(OMR), the organizational
management risk is at a low level. Since K2(CPR) = 0.0141 is the largest among K j(CPR), the
co-production risk is at a medium–low level. Since K2(MR) = 0.0132 is the largest among K j(MR),
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the market risk is at a medium–low level. Since K2(MPR) = 0.0026 is the largest among K j(MPR),
the macro policy risk is at a medium–low level. Then, enterprise E could adjust the corresponding
departments’ work according to the risk levels of first-level indicators.

4.3. Sensitivity Analysis

In order to observe the influence of the final risk value when the indicator’s value changes and
identify the sensitive risk factors, a sensitivity analysis on the risk indicator’s value is implemented.
When the value of a single indicator changes by ±0.1, the corresponding risk value changes are shown
in Figure 3.
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According to the sensitivity analysis of the indicators’ values, the six most sensitive indicators
are ce (Cooperation efficiency), cp (Corporate participation), ps (Policy support of SE), ic (Industry
competition), mc (Co-manufacturing cost), and ma (Marketing ability). As can be seen from Figure 3,
when the value of ce (Cooperation efficiency) increases by 0.04–0.1, the comprehensive risk value
rises sharply; when the value of cp (Corporate participation) or ic (Industry competition) increases
by 0.06–0.1, the comprehensive risk value rises significantly. What’s more, when the value of mc
(Co-manufacturing cost), ma (Marketing ability), or ps (Policy support of SE) is gradually reduced
by 0.1, the comprehensive risk value slowly decreases. Therefore, in order to prevent the increase of
the comprehensive risk value, it is necessary to focus on ce (Cooperation efficiency), cp (Corporate
participation), and ic (Industry competition). Assuming that the comprehensive risk value needs to
be reduced, enterprise E can reduce the co-manufacturing cost, improve the marketing ability, and
increase the policy support of SE.

In addition, sensitivity analyses of the comprehensive risk value based on the order relation
weighting method and entropy weight method are also carried out under the same conditions. When
weighting based on the order relation method, the result shows that the comprehensive risk value
changes linearly with the change of a single indicator’s value. For example, with the continuous
increase of mc (Co-manufacturing cost), the comprehensive risk value increases linearly, while with the
continuous increase of cp (Corporate participation), the comprehensive risk value decreases linearly.
However, this phenomenon indicates the limitation of the assessment of the matter–element extension
model based on the single order relation method. While the variation trend of the comprehensive risk
value based on the entropy weight method is similar to that in Figure 3, the variation range of the
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comprehensive risk value is larger than that in Figure 3, and there are differences in the details. Since
the entropy weight method is an objective weighting method, which relies on objective data and in
this paper depends on the correlation degree obtained by the matter–element extension model, it is
unreasonable to assess the risk of enterprise E engaging in the sharing economy based on the entropy
weight method alone.

Due to there being large differences in values of these indicators, the results calculated by increasing
or decreasing the fixed value will be biased. In order to eliminate this deviation, a sensitivity analysis
on the comprehensive risk value when the indicator’s value changes ±20% is implemented, and the
results are shown in Figure 4. Under the same conditions, sensitivity analyses of the comprehensive risk
value based on the order relation weighting method and entropy weight method are also implemented.
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Figure 4. Sensitivity analysis with indicator’s value changing ±20%.

According to the analysis results, the six most sensitive indicators are ce (Cooperation efficiency),
cp (Corporate participation), ic (Industry competition), f c (Financial operation capability), mc
(Co-manufacturing cost), and md (Manufacturing resources diversity). Among them, the high
sensitivity of cp (Corporate participation), ce (Cooperation efficiency), or ic (Industry competition)
benefits from its high value, which requires focus. Although the value of md (Manufacturing resources
diversity), mc (Co-manufacturing cost), or f c (Financial operation capability) is not high, they are
also worthy of attention. Weighting based on the order relation method, the result shows that the
comprehensive risk value decreases with the increase of some indicators’ values. Obviously, the
matter–element extension model based on the order relation method alone is not reasonable. Further,
the variation trend of the comprehensive risk value based on the entropy weight method is similar to
that in Figure 4, but the variation range of the comprehensive risk value is larger than that in Figure 4,
and there are subtle differences in the sensitivities of some indicators.

4.4. Combinatory Analysis

In order to further study the relationship between a risk indicator’s value and sensitivity, a
combinatory analysis is implemented.

In Figure 5, the horizontal axis represents the standardized indicator’s value evaluated by experts,
and the vertical axis represents the average standard deviation of the risk indicator’s value changes
by ±0.1 and ±20%, namely the comprehensive sensitivity of the indicator’s value. According to the
distribution position of each risk indicator in the coordinate system, the types of the 21 risk indicators
are determined as follows.
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The “Safety Type” includes pm (Platform maturity), is (Platform interaction security), f s (Financial
strength), sl (Supply chain management level), hl (Human resource management level), f a (Sharing
facilities advancement), pc (Production capacity), tc (Technology life cycle), ma (Marketing ability), ms
(Macroeconomic situation), and sa (Social acceptance of SE); these risk indicators have little effect on
the overall risk value.

The “Long-term Planning Type” includes d f (Demand fluctuations), dl (Collaborative
decision-making level), f c (Financial operation capability), md (Manufacturing resources diversity),
and o f (Organizational flexibility). Such risk indicators have higher value, but lower sensitivity. Even if
the indicator’s value changes in the short term, it will have little effect on the comprehensive risk value.

The “Preventive Type” includes mc (Co-manufacturing cost) and ps (Policy support of SE). The
fluctuations of these indicators’ values may lead to large changes in the comprehensive risk value, so
enterprise E needs to take measures to keep the co-manufacturing cost at a low level in advance, and
strives to get the government’s support.

The “Critical Concern Type” includes ce (Cooperation efficiency), cp (Corporate participation), and
ic (Industry competition). For such indicators, a slight change of their values may lead to a significant
change in the comprehensive risk value, so enterprise E needs to pay close attention to these indicators.

5. Discussion and Implications

In order to study the risk of ESEME, this paper constructs the risk assessment indicator system of
ESEME by referring to the existing literature. Then, the matter–element extension model is introduced,
and the risk of enterprise E engaging in the sharing economy is assessed based on the minimum
deviation weight. The assessment results include a precise risk value and the risk level, which are
recognized by the experts who have previously given the risk value and weights of the indicators. In
addition, highly sensitive indicators are found through sensitivity analysis, which provides a basis
for small and medium-sized manufacturing enterprises to accurately identify high-risk factors. By
combinatory analysis, all the risk indicators are divided into four risk types, which can help enterprises
make analysis decisions more conveniently. For example, the results of the above case analysis indicate
that enterprise E needs to specially focus on ce (Cooperation efficiency), cp (Corporate participation),
and ic (Industry competition), so enterprise E should choose suppliers with high cooperation efficiency,
choose a sharing platform with high participation, and strive to improve the quality of their products
or services to distinguish itself from other enterprises in the industry competition. Beyond that, we
believe the theoretical perspectives, assessment methodology, and results of this work will provide
meaningful references for both theoretical researchers and practitioners.
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5.1. Theoretical Implications

Current theoretical research on the sharing economy mainly focuses on the service industry; there
are few studies on the integration of manufacturing and the sharing economy. However, through
in-depth studies on the development difficulties of small and medium-sized manufacturing enterprises
and the operating mechanism of the sharing economy, it is credible that the business model of the
sharing economy can bring positive benefits to manufacturing enterprises facing difficulties, enterprises
with idle resources, and even the whole industry. In addition to focusing on the opportunities brought
by the sharing economy to manufacturing enterprises, this study pays special attention to the other
side—that is, the risk of manufacturing enterprises engaging in the sharing economy. This perspective
is relatively rare in previous studies. We believe that it will lay a foundation and open up new research
ideas for researchers in the field of manufacturing and the sharing economy.

Specifically, this paper adopts the matter–element extension model with a minimum deviation
weight to carry out a risk assessment of ESEME. Entropy weight is generally regarded as an objective
weight, while the order relation weight is relatively subjective. This work integrates these two weights
in the way of minimum deviation and obtains the comprehensive weight that integrates subjective and
objective information, which sheds light on the multi-criteria weight integration and matter–element
evaluation issues.

While traditional risk analysis methods consider that the higher the risk value of an indicator
means the greater the overall risk, through the example, it is believable that the high initial risk
value of an indicator does not mean an increase of the overall risk, but is related to the weight,
sensitivity, and the classical field range, which exposes the non-linear nature of risk. Through the
sensitivity analysis and further combinatory analysis, the proposed matter–element based method
shows stronger identification and assessment capability than traditional risk analysis methods. Our
results demonstrate that the combination of the evaluation value and sensitivity value of indicators
as two dimensions can generate deeper knowledge of risk. The methodology of this work can be
extended to other qualitative and quantitative evaluation problems combined with subjective and
objective information.

5.2. Practical Implications

Our research includes practical implications for practitioners and policymakers. First, by
summarizing the existing theories and applications, we construct a relatively complete risk assessment
indicator system for ESEME. The indicator system includes six dimensions, namely, sharing platform
risk, financial risk, organizational management risk, co-production risk, market risk, and macro policy
risk. Some of these indicators are conventional indicators of risk (e.g., financial strength, human
resource management level), and some are closely related to the sharing economy (e.g., platform
maturity, sharing facilities advancement). Therefore, for manufacturing enterprises, on the one hand,
they need to strengthen their ability to resist common risks, which is very important for any enterprise.
On the other hand, they need to pay special attention to the risks related to the sharing economy,
because these risk factors may not be encountered in their past business process. The indicator system
we built can provide a detailed list of risks for ESEME, which is similar to a medical form tailored to
manufacturing enterprises.

Secondly, this study provides an operable framework for manufacturing enterprises to assess risks
when engaging in the sharing economy. At present, some manufacturing enterprises have participated
in the practice of the sharing economy, but as a new business model, the sharing economy may also
bring risks to manufacturing enterprises. However, to date, there are few scientific research studies that
can provide practical guidance for manufacturing enterprises in this regard. We present a four-step risk
assessment framework of “index system construction–matter element establishment—indicator and
weight measurement–sensitivity and combinatory analysis” for manufacturing enterprises. Each step
has strong operability, and the results obtained are intuitive, explanatory, and instructive. Following
up on the proposed risk assessment framework, manufacturing enterprises can effectively reduce the
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uncertainty in the process of engaging in the sharing economy, and accurately locate, identify, and
evaluate risks.

Finally, the research can provide references for the government to formulate relevant policies for
ESEME. Currently, the application of the sharing economy model is expanding, but the relevant
policy system is insufficient. The risks in many aspects of ESEME are inseparable from the
actions of policymakers. Policymakers need to effectively control possible systemic risks while
encouraging manufacturing enterprises to develop their engagement with the sharing economy. For
example, policymakers can reduce platform risks by monitoring the maturity of sharing platforms
and encouraging manufacturing resource providers to publish diverse resources on the platforms.
Policymakers also need to have a good grasp of the overall risk situation of ESEME. For example, they
can use the method of this paper to evaluate the risks of key enterprises, and through the integration
of the risk of multiple enterprises, the overall assessment of the current risk can be obtained; then, the
closed-loop management of risk of ESEME can be realized.

6. Conclusions

In the context of green development, the business model of the sharing economy has attracted
much attention from multiple disciplines. The sharing economy can effectively solve the issues such as
resource shortage and environmental degradation, and can promote the sustainable development of
the manufacturing industry. Therefore, many manufacturing enterprises are considering transforming
and upgrading themselves by engaging in the sharing economy. In this work, we conduct an in-depth
research on the process of ESEME and mainly focus on the inevitable risk issues. In order to ensure that
small and medium-sized manufacturing enterprises can identify various risk factors and subsequently
avoid them in the process of engagement, an operable method for the risk assessment of ESEME
is proposed.

The contribution of this work mainly lies on three aspects. Firstly, the matter–element extension
method is used to assess the risk of ESEME. Most of the existing studies on sharing economy risks are
qualitative analyses of the negative impact of the sharing economy on society. A cognitive framework
of risk assessment is proposed in this work, which integrates objective risk information and subjective
cognitive factors, and constructs a risk assessment indicator system for ESEME under the guidance of
the matter–element extension based approach. Secondly, this paper draws upon the minimization
of deviation method, which integrates the entropy weight method and the order relation method,
and obtains a balanced comprehensive weight. The minimum deviation weighting method has many
advantages, such as reducing the influence of characteristic coupling, avoiding the one-sidedness of
weight, and more scientifically revealing the difference of importance among risk indicators. Finally, in
order to investigate the influence of each indicator’s risk value on the comprehensive risk, sensitivity
analysis and combinatory analysis are implemented, according to which, risk indicators can be
identified and classified. These analyses provide practical guidance for manufacturing enterprises to
locate risks more accurately and realize sustainable development.

However, there are still some limitations of this research. As some of the risk indicators come
from expert ratings, this may reduce the objectivity of the results. However, since the process of
risk assessment itself is a process of combining subjective and objective information, an appropriate
amount of subjective indicators is also reasonable. In addition, in the model, the positive and negative
types of risk indicators are mainly considered; however, the risk indicators are not actually necessarily
positive or negative. They also may be moderate, so the calculating models and methods can be further
improved in future works.
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Appendix A

Table A1. Indicators’ scores from five experts.

First-Level
Indicator

Second-Level
Indicator Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Average Value Standardized Value

SPR pm 45 53 60 55 65 55.6 0.444
md 62 48 52 45 40 49.4 0.506
cp 20 22 25 21 30 23.6 0.764
is 50 55 60 62 64 58.2 0.418

FR mc 70 79 71 68 77 73.0 0.270
f s 60 59 65 62 63 61.8 0.382
f c 50 46 49 56 48 49.8 0.502

OMR sl 70 66 63 69 73 68.2 0.318
hl 60 67 65 69 66 65.4 0.346
dl 50 52 48 45 58 50.6 0.494
o f 30 32 33 31 30 31.2 0.688

CPR f a 77 66 72 71 68 70.8 0.292
ce 22 20 15 17 19 18.6 0.814
pc 60 65 67 66 70 65.6 0.344
tc 70 71 75 72 72 72.0 0.280

MR d f 40 47 48 55 50 48.0 0.480
ic 70 75 78 77 79 75.8 0.758

ma 73 74 76 74 72 73.8 0.262

MPR ps 70 81 83 75 72 76.2 0.238
ms 60 61 62 63 65 62.2 0.378
sa 59 58 61 63 54 59.0 0.410

Appendix B

Table A2. The first-level indicators’ order relationship and the importance ratio between the two
adjacent indicators.

Expert The Order Relationship r2 r3 r4 r5 r6

Expert 1 FR > SPR > OMR > MR > CPR > MPR 1.6 1.6 1.2 1.4 1.8
Expert 2 FR > SPR > MPR > MR > CPR > OMR 1.4 1.6 1.4 1.2 1.2
Expert 3 SPR > FR > CPR > MPR > MR > OMR 1.2 1.6 1.4 1.4 1.6
Expert 4 SPR > FR > MPR > MR > CPR > OMR 1.2 1.4 1.6 1.2 1.4
Expert 5 FR > SPR > OMR > MPR > MR > CPR 1.8 1.4 1.6 1.4 1.2

Table A3. The first-level indicators’ weights based on the order relation method.

SPR FR OMR CPR MR MPR

Expert 1 0.2312 0.3700 0.1445 0.0860 0.1204 0.0478
Expert 2 0.2408 0.3371 0.0746 0.0896 0.1075 0.1505
Expert 3 0.3167 0.2639 0.0526 0.1649 0.0841 0.1178
Expert 4 0.3001 0.2501 0.0665 0.093 0.1116 0.1786
Expert 5 0.2200 0.3960 0.1571 0.0585 0.0702 0.0982

Average Weight 0.2618 0.3234 0.0991 0.0984 0.0988 0.1186
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Table A4. The order relationship of the second-level indicators under sharing platform risk and the
importance ratio between the two adjacent indicators.

Expert The Order Relationship r2 r3 r4

Expert 1 md > pm > is > cp 1.4 1.2 1.6
Expert 2 md > cp > pm > is 1.8 1.4 1.6
Expert 3 pm > cp > is > md 1.4 1.2 1.2
Expert 4 cp > md > is > pm 1.4 1.6 1.2
Expert 5 cp > pm > md > is 1.2 1.6 1.6

Table A5. The weights of the second-level indicators under sharing platform risk based on the order
relation method.

pm md cp is

Expert 1 0.2664 0.3729 0.1387 0.222
Expert 2 0.1803 0.4545 0.2525 0.1127
Expert 3 0.3564 0.1768 0.2546 0.2122
Expert 4 0.1469 0.282 0.3948 0.1763
Expert 5 0.311 0.1944 0.3732 0.1215

Average Weight 0.2522 0.2961 0.2828 0.1689

Table A6. The order relationship of the second-level indicators under financial risk and the importance
ratio between the two adjacent indicators.

Expert The Order Relationship r2 r3

Expert 1 mc > f s > f c 1.4 1.8
Expert 2 mc > f c > f s 1.6 1.6
Expert 3 f s > mc > f c 1.6 1.4
Expert 4 f s > f c > mc 1.6 1.4
Expert 5 f c > f s > mc 1.4 1.2

Table A7. The weights of the second-level indicators under financial risk based on the order
relation method.

mc fs fc

Expert 1 0.4737 0.3383 0.188
Expert 2 0.4961 0.1938 0.3101
Expert 3 0.3017 0.4828 0.2155
Expert 4 0.2155 0.4828 0.3017
Expert 5 0.2577 0.3093 0.433

Average Weight 0.3489 0.3614 0.2897

Table A8. The order relationship of the second-level indicators under organizational management risk
and the importance ratio between the two adjacent indicators.

Expert The Order Relationship r2 r3 r4

Expert 1 sl > dl > o f > hl 1.4 1.8 1.2
Expert 2 sl > dl > hl > o f 1.2 1.6 1.2
Expert 3 dl > o f > sl > hl 1.6 1.4 1.4
Expert 4 dl > sl > hl > o f 1.6 1.4 1.2
Expert 5 sl > hl > dl > o f 1.4 1.2 1.8
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Table A9. The weights of the second-level indicators under organizational management risk based on
the order relation method.

sl hl dl of

Expert 1 0.4095 0.1354 0.2925 0.1625
Expert 2 0.3587 0.1868 0.2989 0.1557
Expert 3 0.1868 0.1334 0.4184 0.2615
Expert 4 0.2558 0.1827 0.4093 0.1523
Expert 5 0.3788 0.2705 0.2255 0.1253

Average Weight 0.3179 0.1818 0.3289 0.1715

Table A10. The order relationship of the second-level indicators under co-production risk and the
importance ratio between the two adjacent indicators.

Expert The Order Relationship r2 r3 r4

Expert 1 ce > pc > tc > f a 1.4 1.8 1.2
Expert 2 ce > tc > pc > f a 1.2 1.6 1.6
Expert 3 pc > f a > ce > tc 1.4 1.2 1.6
Expert 4 pc > tc > f a > ce 1.8 1.6 1.2
Expert 5 f a > ce > tc > pc 1 1.6 1.2

Table A11. The weights of the second-level indicators under co-production risk based on the order
relation method.

fa ce pc tc

Expert 1 0.1354 0.4095 0.2925 0.1625
Expert 2 0.1215 0.3732 0.1944 0.311
Expert 3 0.2664 0.222 0.3729 0.1387
Expert 4 0.1584 0.132 0.4562 0.2534
Expert 5 0.3179 0.3179 0.1656 0.1987

Average Weight 0.1999 0.2909 0.2963 0.2129

Table A12. The order relationship of the second-level indicators under market risk and the importance
ratio between the two adjacent indicators.

Expert the Order Relationship r2 r3

Expert 1 d f > ic > ma 1.6 1.2
Expert 2 d f > ma > ic 1.4 1.4
Expert 3 ma > d f > ic 1.2 1.4
Expert 4 ma > ic > d f 1.6 1.2
Expert 5 ic > d f > ma 1.4 1.4

Table A13. The weights of the second-level indicators under market risk based on the order
relation method.

df ic ma

Expert 1 0.466 0.2913 0.2427
Expert 2 0.4495 0.2294 0.3211
Expert 3 0.3431 0.2451 0.4118
Expert 4 0.2427 0.2913 0.466
Expert 5 0.3211 0.4495 0.2294

Average Weight 0.3645 0.3013 0.3342
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Table A14. The order relationship of the second-level indicators under macro policy risk and the
importance ratio between the two adjacent indicators.

Expert The Order Relationship r2 r3

Expert 1 ps > ms > sa 1.8 1.6
Expert 2 ps > sa > ms 1.6 1.2
Expert 3 ms > ps > sa 1.2 1.6
Expert 4 ms > sa > ps 1.6 1.4
Expert 5 sa > ps > ms 1.2 1.4

Table A15. The weights of the second-level indicators under macro policy risk based on the order
relation method

ps ms sa

Expert 1 0.5255 0.292 0.1825
Expert 2 0.466 0.2427 0.2913
Expert 3 0.354 0.4248 0.2212
Expert 4 0.2155 0.4828 0.3017
Expert 5 0.3431 0.2451 0.4118

Average Weight 0.3808 0.3375 0.2817
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